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INTRODUCTION 

Explosives and propellants are often used under conditions of confinement and 
pressurization. Explosives are confined in projectile cases and are pressurized during launch by 
set-back forces and during impact by set forward forces. Propellants are confined by the breech 
and are pressurized by hot gases during burning. Because of these pressurizations, the 
properties of explosives and propellants under pressure are of interest. In particular, the 
mechanical properties under pressure are needed for modeling and safety considerations. For 
example, for the modeling of an explosive filled projectile during launch or impact, the 
mechanical properties of the explosive under pressure are required. Similarly, for the modeling 
of a propellant charge during burning, the mechanical properties of the propellant under 
pressure are required. Of particular concern are the mechanical failure properties under 
pressure. Fracture or yield during the use of explosives can lead to unwanted and/or hazardous 
ignitions (refs. 1 through 4). In addition, the fracture of propellants during burning can lead to 
hazardous burning conditions (ref. 5). The results presented here also indicate the possible 
hazards associated with crack processes (ref. 6). Because of these considerations, a program 
was initiated to study the mechanical properties of these materials under hydrostatic pressure 
(refs. 9 and 10). 

EXPERIMENTAL 

A high pressure chamber designed at Structural Behavior Engineering Laboratory, 
Phoenix, Arizona to contain pressures up to 138 MPa was used to study the compressive 
mechanical properties as a function of confining pressure (ref. 7). Hydraulic oil was used as the 
confining medium and the sample in the form of a right circular cylinder was protected from the 
oil by a tight fitting tubular gum rubber or neoprene shroud. The ends of the sample were 
against steel platens and O-ring seals were used to prevent oil from reaching the sample (refs. 7 
through 10). The confining pressure is taken here as the chamber hydrostatic pressure before 
the start of and/or during the axial compression. In all cases, the pressures referred to here are 
this hydrostatic pressure. The chamber pressure was determined using a SENSOTEC pressure 
gauge, model JTE/1108-03, calibrated by the manufacturer and mounted at the base of the 
chamber. In addition, A McDaniel Controls dial pressure gauge was mounted at the pump. 
Measurements at atmospheric pressure (0.1 MPa) were made in air. 

The samples were compressed along the cylindrical axis and two linear voltage 
differential transformers (LVDTs) were mounted to measure axial strains. They were spaced 
180 deg apart around the circumference of the sample with their axes parallel to the sample 
axis. The sample axial strain was taken as the average of the strains obtained from the two 
LVDTs. Two or three additional LVDTs were mounted to measure radial strains. They were 
placed in a plane at the sample axial mid position with their axes perpendicular to the sample 
axis. They were also 180 deg apart (or 120 deg for three radial LVDTs) around the sample 
circumference (refs. 7 through 10). 

Axial stress versus axial strain data in compression were obtained using the chamber 
described previously and an MTS servo-hydraulic system operated at a constant displacement 
rate (refs. 11 and 12). All work presented was carried out at strain rates of approximately 
0.0005/sec and 0.001/sec with the exception of results explicitly a function of strain rate. The 
right circular cylinder samples were 3.81 cm (1.50 in.) in length and 1.90 cm (0.75 in.) in 
diameter and so had a length to diameter ratio of two. The end faces of all samples were coated 



with a lubricant to minimize frictional effects between the sample end faces and the loading 
platens. The sample temperatures during measurements were between 20 and 23°C and 
samples were conditioned at temperature for at least 2 hrs before measurement. The 
dimensions of all samples at 0.1 MPa (atmospheric pressure) were used to obtain engineering 
stress and engineering strain. 

Most of the measurements reported here were made with samples of EDC37, a United 
Kingdom plastic bonded explosive (PBX). The composition of this explosive is given in table 1 
along with the compositions of other similar materials, which are referred to in this report. 
Samples were prepared by pressing into large billets and machining to size. Precautions were 
taken to insure that the cylinder end faces were adequately flat and parallel (ref. 13). The 
densities of all samples were in a narrow range close to the maximum theoretical (zero porosity) 
density. The densities of most samples were determined before and after compression by 
weighing in air and in purified water and by using the density of water at the temperature of 
measurement. All sensors were calibrated by the manufacturer. It is estimated that variations 
from sample to sample in any measured quantity are significantly greater than errors introduced 
by the sensors or error introduced during data processing. 

Table 1 
Composition of composites 

Binder 
Name Explosive/inert Polymer Plastizer TG (°C) 

EDC37 HMX NC DNEB/TNEB -63 
91% 1.0% 5.22%/2.78% 

PAX2A HMX CAB BDNPA/F -37 
85% 6% 9% 

PBS 9501 SUCROSE ESTANE BDNPA/F -41(B)a 

94% 3% 3% 
PBX 9501 HMX ESTANE BDNPA/F -41(B)a 

95% 2.5% 2.5% 
LX-14 HMX 

95.5% 
ESTANE 

4.5% 
31(B)a 

Nomenclature: HMX - cyclotetramethylene tetranitramine, NC - nitrocellulose, DNEB - dinitroethylbenzene, TNEB • 
trinitroethylbenzene, CAB - cellulose acetate butyrate, BDNPA/F - Bis(2,2-dinitropropyl)Acetal/Formal, Estane - 
polyurethane. 

B - Property of the binder. 

Reference 10. 

RESULTS 

The results indicate two pressure ranges in which the mechanical failure properties 
differ, a low pressure range between about 0.1 and 7.0 MPa for EDC37 in which failure occurs 
via crack processes and a higher pressure range between about 7.0 and 138 MPa for the same 
composite in which failure occurs via slip processes. The low pressure range is considered here 
in some detail. The higher pressure range is considered elsewhere (Wiegand, et al, to be 
published) 



In figure 1, axial stress versus axial strain curves for EDC37 are given for several 
confining pressures in the low pressure range. The pressures are as marked. The curve at 
atmospheric pressure (0.1 PMa) has the typical response of many energetic materials at this 
pressure and temperature (i.e., an initial linear increase of stress) a maximum stress followed by 
work softening (decrease of stress) with increasing strain (refs. 13 and 14). Available evidence 
indicates that the deviation from linearity after the initial linear region, the maximum and the 
work softening are associated with crack damage (refs. 15 and 16). In fact, acoustic emission 
results suggest that some crack damage is generated throughout the stress-strain curve (ref. 
17). Evidence of surface cracking is observed for most samples deformed into the higher strain 
parts of the work softening region at atmospheric pressure. 

M Ml « IB <M •• •« 

Figure 1 
Axial stress versus axial strain for pressures in the low pressure range 

Both the initial slope and the maximum stress increased with pressure, while the 
negative work softening slope decreases with increasing pressure and is close to zero at a 
pressure of 6.9 MPa. The latter result suggests that either crack damage decreases with 
increasing pressure and is negligible at 6.9 MPA or that crack damage is generated, but that 
other factors prevent the work softening from being observed. The latter is apparently the case 
as discussed elsewhere (ref. 18). Somewhat similar results were obtained for PBS 9501 (ref. 
10). 

In the higher pressure range, which is about 7.0 MPa to 138 MPa for EDC37, the slope 
at larger strains is positive, [i.e., work hardening is observed and a maximum in the stress-strain 
curve is not observed (not shown)]. In this pressure range, the initial slope, which gives the 
modulus, the yield strength and the work hardening slope all increased with increasing pressure, 
but are much less sensitive to pressure than the modulus, the compressive strength and the 
work softening slope in the low pressure range. Somewhat similar results were obtained for 
PBS 9501 (ref. 10) and LX-14 (Wiegand and Reddingius, unpublished). As noted, the higher 
pressure range will be discussed in detail elsewhere (ref. 18). 



In figure 2, the compressive strength (the maximum compressive stress) is given versus 
confining pressure in the low pressure range for EDC37 and a straight line has been fitted to the 
data points. The results indicate a linear increase with increasing pressure with a slope close to 
two. Similar results were obtained at other strain rates. More limited results for PBS 9501 also 
indicate a similar increase of the compressive strength with increasing pressure. The results of 
figures 1 and 2 indicate that crack processes are inhibited by confining pressure; i.e., the stress 
required at any strain to cause crack damage increases with increasing confining pressure. 

Figure 2 
Compressive strength versus pressure for pressures in the low pressure range 

As noted, the yield strength for EDC37 also increases with increasing pressure in the 
higher pressure range (not shown). However, the slope in the higher pressure range is about 
1/40 of the slope of the compressive strength versus pressure as given in figure 2 for the low 
pressure range. 

After compression, the samples are barreled; i.e., the diameter at the sample mid plane 
is greater than the diameters at the sample ends. However, in all cases, there is an increase in 
the sample average diameter and a decrease in the average sample length due to deformation. 

The dimensions and densities of all samples were measured at atmospheric pressure 
before and after compression. The dimensions were determined by measurements at several 
locations on the sample and averaged. As noted, the lengths of all samples after compression 
are decreased relative to values before compression so that all have permanent negative 
(compressive) axial strains. In addition, the average diameters of all samples after compression 
are increased relative to values before compression so that all have positive permanent radial 
strains. The volumes and densities of most samples were determined by weighing in air and in 
purified water and by use of the water density at the temperature of measurement. The volumes 
before and after compression indicate small volume expansions due to deformation. In addition, 
the density measurements indicate small fractional density decreases with deformation ranging 
from hundredths of a percent up to about 3.9%. 



DISCUSSION 

The results in the low pressure range can be understood on the basis of a friction model 
developed by Dienes (ref. 19) and Zuo and Dienes (refs. 20 and 21). Other authors have also 
considered the effect of friction on the mechanical properties of materials (refs. 22 through 27). 
Dienes (ref. 19) and Zuo and Dienes (refs. 20 and 21) have applied the concept of coulomb 
friction forces between closed shear crack surfaces as resisting crack motion (ref. 28). This is 
illustrated by the sketch in figure 3.  aa is the applied compressive stress; aap is the applied 

stress on a shear plane; p , whose normal makes an angle </> with the applied stress direction; 

and aps and apn are the components of aap parallel and perpendicular to the shear plane, 

respectively. These later stresses are given in terms of oa and <j> as 

aps =<Ja C°s <t&m<t> (1) 

°> = oc,Cos2(t> (2) 

The net shearing stress on the plane p is then 

asne< = aps ~ ^apn (3) 

where // is the friction coefficient. And if a hydrostatic pressure P is applied to the sample in 

addition to the applied uniaxial stress aa equation 3 becomes 

V.snel=°Ps-V(<Tan+P) (4a) 

= aclCos<fiSin0- f.i{aaCos2<l> + P) (4b) 

by using equations 1 and 2. 

Then equation 4b can be rearranged to give 

aa ={crsnet + /.iP)/\Sin4Cos0-JLICOS <f>) (5) 



Figure 3 
Stresses for the friction model 

If equation 5 is applied to the maximum of the stress-strain curve, then <ysmt is the shear 
stress at the maximum. Thus, aa increases linearly with P as observed (fig. 2), if <jsnet is 
independent of pressure or is linearly dependent on pressure. For the case of asnet, independent 
of pressure <ra increased linearly with pressure with a slope of 

slope = n/\Sin0Cos0 - /JCOS <j>) (6) 

The angle </> is determined by the plane on which the shear stress, asnel, is a maximum. 
By differentiating equation 4b with respect to <j> with constant aa , n , and P and setting the 
differential equal to zero the following is obtained 

Tarr4-2fO'(m$-l = 0 

And by taking the positive route 

Tart(t> = n + (ju2+lf2 

(7) 

(8) 

Thus, by measuring the angle <j>, /u can be determined from equation 8.  /J can also be 
determined from equation 6 using the slope of figure 2 and the measured value of <j>. Note that 
the angle </> is independent of P. It is assumed here that the samples are isotropic and thus 
that all crack orientations exist. 



The angle <f> can be obtained as the angle that the normal to the fracture surface makes 

with the applied stress, oa , direction (fig. 3). However, in many cases fracture was not 

observed, but white lines on the sample surfaces were observed in most cases when fracture 
did not occur. (Fracture was only observed at atmospheric pressure, but the white lines were 
observed at atmospheric pressure and at some elevated pressures in the low pressure range.) 
These white lines are taken as the precursors of the fracture surfaces and they make approxi- 
mately the same angle with the applied stress direction as the actual fracture surfaces. There- 
fore, the angle <f> was obtained from the angle of the fracture surface in those cases where 

fracture was observed and from the angle of the white lines in cases where they were observed. 
The average value is <f> = 61.8 deg. By comparison, this angle is 45 deg when n =0 (eq. 8). For 

plastic bonded explosives, this angle was observed to be greater than 45 deg in most if not all 
cases, thus indicating the general importance of friction,   /J as obtained from equation 6 is 0.58 
and as obtained from equation 8 is 0.66, and these are listed in table 2. The agreement of these 
two values of /J supports the assumptions made in equation 6. ju obtained from equation 6 is 

expected to be the dynamic coefficient of friction and the value obtained from equation 8 is most 
probably also the dynamic coefficient. 

Dienes (ref. 19) and Zuo and Dienes (ref. 20 and 21) also give a relationship between 
the friction coefficient (//), Poissons' ratio (v), and the ratio of compressive to tensile strength 
as 

(Compressive Strength)j/(Tensile Strength); = 

[2(2-v)]>/2\^2 + lf2 + ^ (9) 

Table 2 
Values of the friction coefficient, ju, obtained by using various methods 

M Method of determining u 

Slope of compressive strength versus pressure curve and the 
0.58      angle, which the failure plane normal makes with the direction of 

the applied stress - equation 6 

„ Rfi      The angle, which the failure plane normal makes with the 
direction of applied stress - equation 8 

>0.62     The ratio of compressive strength to tensile strength - equation 9 

In equation 9, the compressive strength and the tensile strength are the threshold 
stresses required to initiate rapid unstable crack growth in compression and tension, 
respectively (refs. 19, 29, and 30). In tension, the stress increases in an approximately linear 
manner with increasing strain to a maximum and then the sample fails in the brittle fashion by 
fracture (not shown) (ref. 17 and Wiegand, unpublished results). In addition, there is very little 
acoustic emission with increasing tensile stress until the maximum stress is reached (ref. 17). 
This acoustic emission is interpreted as due to elastic waves generated primarily or at least in 
part by crack processes (ref. 17). Thus, the results suggest that there is minimal crack activity 



until the maximum tensile stress is achieved and that this maximum stress is the stress 
necessary to initiate rapid unstable crack growth. In contrast, in compression acoustic emission 
was observed throughout most of the increasing stress part of the stress strain curve, through 
the maximum and into the work softening part of the curve (ref. 17), but fracture indicating 
unstable rapid crack growth was not observed. (See the stress-strain curve at atmospheric 
pressure in figure 1.) It is suggested that only slow crack growth (ref. 31) occurs during the 
compressive stress-strain curve and that the observed acoustic emission is primarily or at least 
in part due to this slow crack growth. It is further suggested that the damage introduced by this 
slow crack growth so weakens the sample that the stress required for unstable rapid crack 
growth in compression is not attained. Rapid unstable crack growth is observed in compression 
at low temperature (refs. 32 and 33). Slow crack growth is not expected at low temperatures. 

Slow crack growth is thermally activated and stress assisted (ref. 31), and does not have 
an explicit threshold stress. In contrast, rapid unstable crack growth does have a threshold 
stress. Dienes (ref. 15) and Dienes and Reilly (ref. 16) used crack growth models without 
thresholds to obtain fits to Wiegand's (unpublished results) uniaxial compressive stress-strain 
data for PBX 9501. In addition, Dienes (ref. 15) was able to obtain a fit to the strain rate 
dependence of Wiegand's results only by introducing slow crack growth into his model. 
Modelers at Atomic Weapons Establishment, Aldermaston, United Kingdom have found a very 
low stress threshold for crack growth in EDC37 (ref. 34). All of these results support the 
hypothesis that primarily slow crack growth and not rapid unstable crack growth occurs in 
compression in these composites for the conditions of interest here. The maximum stress 
observed in compression, the compressive strength, is then less than the stress required for 
rapid unstable crack growth and this latter stress is not observed for the reason given 
previously. Returning then to equation 9, a calculation of the friction coefficient using the 
compressive strength and the tensile strength will yield a coefficient, which is less than the true 
value because the compressive strength is less than the stress required for rapid unstable crack 
growth. Poisson's ratio was found to be 0.42 for EDC37 in the low pressure range using 
neoprene shrouds and the system described previously in the experimental section. The ratio of 
compressive to tensile strengths is 3.2 for the conditions of this work (Ellis, unpublished). Then 
/j obtained from equation 9 is 0.62 and this is listed in table 3 as a lower limit. The agreement 
between two of the values of /y (table 2) as obtained from equations 6 and 8 and the minimum 

value as obtained from equation 9 provide significant support for the role of friction in 
determining the compressive stresses. Values of // for three other composite plastic bonded 
explosives obtained using equation 9 are somewhat close to the values for EDC37. 

It is to be noted that at high strain rates the time available for slow crack growth for a 
given range of strain will be much less than the time needed for the same range of strains at low 
strain rates. Therefore, the damage introduced by slow crack growth will be less at the higher 
strain rate. Thus, the sample will support larger stresses at the higher rate and so the stress 
may increase to that required for rapid unstable crack growth and fracture. 

Because there is friction between crack surfaces associated with crack motion, there will 
be heating of the crack surfaces. This raises the possibility of ignition of reaction at crack 
surfaces because of this heating. Zuo and Dienes (refs. 20 and 21) have presented evidence of 
reaction at cracks surfaces taken from the work of Howe, et.al (ref. 1). These latter investigators 
impacted artillery shells containing TNT and afterwards polished TNT surfaces to reveal cracks. 
In particular, several cracks exhibited evidence of reaction along the crack length, thus giving 



support to the hypothesis of ignition due to frictional heating at the crack surfaces. In addition, 
Dienes, et.al (ref. 35) have calculated particle velocity versus time, curves which are very 
similar, to observed curves of Mulford, et.al (ref. 36) for PBX 9501 subjected to multiple shocks. 
Dienes, et.al used a model in which frictional heating on shear cracks raises the local 
temperature and pressure sufficiently to initiate reaction. Both of these works indicate the very 
practical importance of friction between the surfaces of cracks in explosives. 

SUMMARY AND CONCLUSIONS 

A linear increase of the compressive strength with increasing pressure is attributed to the 
effect of coulomb friction between the surfaces of closed shear cracks. The slope obtained from 
this linear relationship is proportional to the friction coefficient and is also dependent on the 
failure angle, the angle which the failure plane, the plane of maximum shear stress, makes with 
the loading direction. In addition, Dienes (ref. 19) and Zuo and Dienes (refs. 20 and 21) predict 
a relationship between the friction coefficient and only the failure angle. The friction coefficient 
obtained from the slope of the strength versus pressure curve and the failure angle is in sub- 
stantial agreement with the coefficient obtained only from the failure angle. These authors also 
predict a relationship between the friction coefficient and the ratio of compressive strength to 
tensile strength, at atmospheric pressure. A lower limit on the value of the friction coefficient 
was obtained from this relationship, which is in agreement with the other values noted 
immediately. This agreement of friction coefficients obtained from the three different relation- 
ships is taken as strong support for the role of friction in the mechanical properties of this 
composite. 
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